Olfactory preference conditioning changes the reward value of reinforced and non-reinforced odors
نویسندگان
چکیده
Olfaction is determinant for the organization of rodent behavior. In a feeding context, rodents must quickly discriminate whether a nutrient can be ingested or whether it represents a potential danger to them. To understand the learning processes that support food choice, aversive olfactory learning and flavor appetitive learning have been extensively studied. In contrast, little is currently known about olfactory appetitive learning and its mechanisms. We designed a new paradigm to study conditioned olfactory preference in rats. After 8 days of exposure to a pair of odors (one paired with sucrose and the other with water), rats developed a strong and stable preference for the odor associated with the sucrose solution. A series of experiments were conducted to further analyze changes in reward value induced by this paradigm for both stimuli. As expected, the reward value of the reinforced odor changed positively. Interestingly, the reward value of the alternative odor decreased. This devaluation had an impact on further odor comparisons that the animal had to make. This result suggests that appetitive conditioning involving a comparison between two odors not only leads to a change in the reward value of the reinforced odor, but also induces a stable devaluation of the non-reinforced stimulus.
منابع مشابه
Multiple Reversal Olfactory Learning in Honeybees
In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-). This protocol is useful to determine whether or not animals "learn to learn" and solve successive discriminations faster (or with fewer errors) with increasing reversal experien...
متن کاملConfigural olfactory learning in honeybees: negative and positive patterning discrimination.
In an appetitive context, honeybees (Apis mellifera) learn to associate odors with a reward of sucrose solution. If an odor is presented immediately before the sucrose, an elemental association is formed that enables the odor to release the proboscis extension response (PER). Olfactory conditioning of PER was used to study whether, beyond elemental associations, honeybees are able to process co...
متن کاملSide-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes
Honeybees can be trained to associate odorants to sucrose reward by conditioning the proboscis extension response. Using this paradigm, we have recently shown that bees can solve a side-specific task: they learn simultaneously to discriminate a reinforced odor A from a non-reinforced odor B at one antenna (A+B-) and the reversed problem at the other antenna (A-B+). Side-specific (A+B-/B+A-) con...
متن کاملThe effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations.
We studied the ability of honeybees to discriminate between single odorants and binary olfactory mixtures. We analyzed the effect of the number of common elements between these two stimulus classes on olfactory discrimination. We used olfactory conditioning of the honeybees' proboscis extension reflex (PER), a paradigm in which odors can be associated with a reinforcement of sucrose solution. B...
متن کاملDifferential associative training enhances olfactory acuity in Drosophila melanogaster.
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms...
متن کامل